Articles

Reactions of Bis(trifluoromethy1)sulfoxydifluoride with Nitrogen or Oxygen Nucleophiles

Am Sandhu, Gary L. Card,' Nimesh R. Patel, Robert L. Kirchmeier and Jean'ne M. Shreeve'

Department of Chemistry, University of Idaho, MOSCOW, Idaho 83843

Received February 11, 1993

The reactions of bis(trifluoromethyl)sulfoxy difluoride with secondary amines give high yields of bis(trifluoromethyl)sulfoxyamines, $(CF_3)_2S(O)(NR_2)_2$ where $R_2N = (CH_3)_2N$, $(C_2H_3)_2N$, $NCH_2CH_2CH_2CH_2CH_2$, and $CH_2CH_2NCH_2NCH_2NCH_3$. With *N,N'*-dimethylethylenediamine a 1:2 reaction occurs to form $(CF_3)_2S(O)$ -[N(CH,)CH2CH2N(CH3)H]2 whereas with ethylene glycol the reaction stoichiometry is **1: 1** with concomitant cyclization to give $(CF_3)_2S(O)OCH_2CH_2O$. Sulfoximides $(CF_3)_2S(O)=NR$ $[R = CH_2CF_3, C(CH_3)_3]$ and CH_2CH_2OH] result from reaction with primary amines. With primary diamines, bis(sulfoximides), (CF3)₂S- $(O)=-N(CH_2)_nN=SO(CF_3)_2(n=2,3)$, form. The reaction products of $(CF_3)_2S(O)F_2$ with various nucleophiles are compared with those found for other simple fluorine-containing S(V1) compounds. *Inorg. Chem.* 1993, 32, 3205–3208

 Articles
 Op ulfoxydifluoride with Nitrog
 and,¹ Nimesh R. Patel, Robert L.

University of Idaho, Moscow, Ida,

promethyl)sulfoxy difluoride with sequely of Idaho, Moscow, Ida,

a)₂S(O)(NR₂₎₂ where R₂N = (CH

With N,N'-dim

Introduction

The complexity of or the number of steps required in the synthesis of a compound very often is the determining factor in the extent to which its reaction chemistry is investigated. Attempts to prepare perfluoroalkyl derivatives of sulfur oxytetrafluoride by fluorination of (trifluoromethy1)sulfinyl fluoride with elemental fluorine result in a variety of products but cleavage of the $C-S$ bond occurs to give CF_4 as a major reaction product.^{2,3} However, thionyl fluoride is oxidatively fluorinated to thionyl tetrafluoride with chlorine fluoride.4 By taking advantage of this methodology, we were able to report the initial synthesis of $(R_1)_2S(O)F_2$ via a

high yield, albeit, multistep, synthetic route, viz.
\n
$$
CCl_3SCl \rightarrow CF_3SCl^5
$$
\n
$$
CF_3SCl + AgOC(O)R_f \rightarrow CF_3SOC(O)R_f^6
$$
\n
$$
CF_3SOC(O)R_f \rightarrow CF_3SR_f + CO_2
$$
\n
$$
CF_3SR_f + 2CIF \rightarrow CF_3SF_2R_f
$$
\n
$$
CF_3SF_2R_f + HCl \rightarrow CF_3SCO)R_f
$$
\n
$$
CF_3SF_2R_f + HCl \rightarrow CF_3SOO)R_f
$$
\n
$$
CF_3SO(R_f + 2CIF \rightarrow R_f(CF_3)SO)F_2
$$
\n
$$
R_f = CF_3, C_2F_5, C_3F_7, -CF_2CF_2CF_2CF_2
$$

When the latter reaction is carried out at higher temperature, the yields of the **bis(perfluoroalky1)sulfoxy** difluorides decrease with a concomitant increase in the degree of C-S bond cleavage. Further fluorination or chlorofluorination of these oxydifluorides did not occur since addition across the sulfur-oxygen double bond

- (1) Visiting Professor. **PortlandStateUnivenity,Portand,** OR97202,1982- 1983.
- (2) Lawless, E. W.; Hannan, L. D. *horg. Chem.* 1968, 7, 391.
- (3) Ratcliffe, C. T.; Shreeve, J. M. J. Am. Chem. Soc. 1968, 90, 5403.
(4) Schack, C. J.; Wilson, R. D. Inorg. Chem. 1970, 9, 311.
(5) Tullock, C. W.; Coffman, D. D. J. Org. Chem. 1960, 25, 2016.
-
-
- (6) Sauer, D. T.; Shreeve, J. M. *J. Fluorine Chem.* 1971/72,1, 1; Sauer,
-
- D. T.; Shreeve, J. M. *Inorg. Synth.* **1973**, 14, 42.

(7) Sauer D. T.; Shreeve, J. M. Z. Anorg. Allg. Chem. **1971**, 385, 113; Abe, T.; Shreeve, J. M. J. *Fluorine Chem.* 1973.3, 17.

normally requires a catalyst, such as an alkali metal fluoride.^{8,9} Elemental fluorine also oxidatively fluorinates RR'SO to Now, by using the methodology of Farnham and others,^{11,12} $RR'S(O)F_2 (R = R' = C_6H_5; R = R' = p \cdot FC_6H_4)$ in CCl₃F.¹⁰

(CF₃)₂S(O)F₂ can be readily obtained in a two-step synthesis
\n
$$
SOF_2 + 2CF_3SiR_3 \longrightarrow_{-2R_3SiF} (CF_3)_2SO
$$
\n(CF₃)₂SO (CF₃)₂S(O)F₂¹³

As is typical of sulfur-fluorine bonds in sulfur(V1) compounds (except SF_6), $(CF_3)_2S(O)F_2$ is susceptible to nucleophilic attack by a variety of moieties. In particular, much attention has been directed to reactions of sulfoxy(V1) difluorides with ammonia and amines.¹⁴⁻¹⁹ The reactions of bis(perfluoroalkyl)sulfoxy difluorides with ammonia provide a direct route to the synthesis of **bis(perfluoroalky1)sulfoximines**

where $R_f = R'_f = CF_3$ or C_2F_5 or where $R_f = CF_3$ and $R'_f =$ $C_2F_5²⁰$ Under similar conditions without solvent, sulfur oxytetrafluoride reacts with ammonia to give polymers.^{21,22} Since dehydrofluorination can not occur with the bis(perfluoro-

- (8) Schack, C. J.; Wilson, R. D.; Muirhead, J. **S.;** Cohz, **S.** N. J. Am. *Chem. Soc.* 1969, 91,2902.
-
-
- (9) Ruff, J. K.; Lustig, M. *Inorg. Chem.* **1964**, 3, 1422.
(10) Ruppert, I. *Angew. Chem.* **1979**, 11, 238. (11) Ruppert, I.; Schich, K.; Volbach, W. *Tetrahedron Lett.* **1984**, 25, 2195. (12) Farnham, W. B. In *Synthetic Fluorine Chemistry;* Olah, G. A., Chambers,
- R. D., Prakcsh, G. K. **S., Eds.;** John Wiley & Sons, Inc.: New York, 1992, Chapter 11.
-
- (13) Patel, N. R.; Kirchmeier, R. L. *Inorg. Chem.* 1992, 31, 2537.
(14) Roesky, H. W. In Sulfur in Organic and Inoranic Chemistry; Senning, A., Ed.; Marcel Decker: New York, 1982; Vol. 4.
- (1 *5)* Haas, A. *Gmelin Handbook of Inorganic Chemistry,* 8th *ed.;* Korchel, D., Ed.; Springer-Verlag: New York, 1987; supplement, Vol. 3, and references therein.
- (16) Filler, R.; Kobayashi, Y. *Biomedical Aspects of Fluorine Chemistry;* Elsevier Biomedical Press: New York, 1982.
- (17) Hudlicky, M. *Chemistry of Organic Fluorine Compounds*; Ellis Harwood: New York, 1978.
- (1 8) Shreeve, J. M. In **Sul/ur** *in Organic and Inorganic Chemistry;* Senning, A., Ed.; Marcel Dekkcr: New York, 1982; Vol. 4and references therein.
- (19) Glemser. *0.;* Mews, R. *Adv. in Inorg. Chem. and Radiochem.* 1972,14, 333.
- (20) Sauer, D. T.; Shreeve, J. M. *Inorg. Chem.* 1972, 11, 238.

0 **1993** American Chemical Society

- (21) Seel, F.; Simon, G. *Angew. Chem.* 1972, 72,709.
- *(22)* Parshall, G. W.; Cramer, R.; Foster, R. E. *Inorg. Chem.* 1962, 1,677.

0020-166919311332-3205\$04.00/0

alkyl)sulfoximines, polymerization does not happen. However, in all cases, a white sublimable solid is formed. This solid is believed to have the formula $(R_f)_2S(O)NH\cdot NH_3$, analogous to the solid isolated in the reaction of ammonia with sulfur oxytetrafluoride.20 However, the free **bis(perfluoroalky1)sulfox**imines are produced quantitatively when the sublimable solid is treated with anhydrous hydrogen chloride.

The reaction of **bis(trifluoromethy1)sulfoximine** with labile chlorides proceeds smoothly at -20 °C in the presence of tertiary amines which provide the driving force for the formation of quatenary ammonium chlorides. Reactions with cyanogen chloride, trimethylchlorosilane, and **(trifluoromethy1)sulfenyl** chloride proceed similarly to yield the appropriate N-substituted **bis(trifluoromethy1)sulfoximine.**

$$
R_fCl + (CF_3)_2S(O)NH \rightarrow R_fN=S(O)(CF_3)_2
$$

\n
$$
R_f = CF_3S, CN, (CH_3)_3Si
$$

With acid fluorides, NaF is used to remove HF. Although trace amounts of products are observed in the reaction without NaF, the presence of a base greatly enhances the yield. Reaction of **bis(trifluoromethy1)sulfoximine** with **(trifluoromethy1)sulfinyl** fluoride or acetyl fluoride in the presence of dry NaF proceeds

smoothly at room temperature to give the products in high yield.
\n
$$
R_f F + (CF_3)_2 S(O) NH \rightarrow R_f N = S(O)(CF_3)_2
$$
\n
$$
R_f = CF_3 C(O), CF_3 S(O)
$$

Bis(trifluoromethy1)sulfoximine reacts with silver(1) oxide in benzene solution to form the silver salt AgN= $S(O)(CF_3)_2^{23,24}$

$$
2(CF3)2S(O)NH + Ag2O \rightarrow 25°C
$$

2AgN=S(O)(CF₃)₂ + H₂O

which when reacted with methyl iodide produces N-methylbis-**(trifluoromethy1)sulfoximine.** This is identical with a sample produced when **bis(trifluoromethy1)sulfoxy** difluoride reacts with methylamine. With elemental chlorine at 25 °C , N-chlorobis-

$$
\begin{aligned} \text{(trifluoromethyl)} \text{sulfoximine is formed.} \\ \text{AgN=} \text{S(O)(CF}_3)_2 + \text{CH}_3 \text{I} &\underset{25 \text{°C}}{\rightarrow} (\text{CF}_3)_2 \text{S(O)} \text{NCH}_3 + \text{AgI} \\ \text{AgN=} \text{S(O)(CF}_3)_2 + \text{Cl}_2 &\underset{25 \text{°C}}{\rightarrow} (\text{CF}_3)_2 \text{S(O)} \text{NCl} + \text{AgCl} \end{aligned}
$$

In this paper, we have extended the study of the reactions of $(CF_3)_2S(O)F_2$ to primary and secondary mono- and diamines and alcohols in the presence of a base or, in some cases, as their silylated derivatives.

Results and Discussion

Although $(CF_3)_2S(O)F_2$ was prepared 2 decades ago and the reaction chemistry of its imine derivatives has been examined,^{7,20}

(23) Roesky, H. W.; Giere, H. H. *Inorg. Nucl. Chem. Left.* **1971, 7, 171. (24) Ruff, J. K.** *Inorg. Chem.* **1965,** *4,* **1446.**

little is available concerning the reactions of the compound itself. We now report further studies based on the susceptibility of $(CF_3)_2S(O)F_2$ to nucleophilic attack to give a variety of products some of which are unexpected. Sandhu et al.

eactions of the compound itself.

based on the susceptibility of

ack to give a variety of products

tethyl)sulfoxy difluoride (I) with

fluoromethyl)sulfoxyamines in

the presence of NaF, *viz.*,

NaF
 \rightarrow

The reactions of **bis(trifluoromethy1)sulfoxy** difluoride **(I)** with secondary amines give **bis(trifluoromethy1)sulfoxyamhes** in essentially quantitative yields in the presence of NaF, *uiz.,*

\n Sandhu\n e is available concerning the reactions of the compound\n i now report further studies based on the susceptibility\n
$$
{}^{2}_{3}
$$
2SO(F₂ to nucleophilic attack to give a variety of\n proc of which are unexpected.\n The reactions of bis(trifluoromethyl)sulfoxydiffuoride (I) and\n any amines give bis(trifluoromethyl)sulfoxyamin\n initially quantitative yields in the presence of NaF, viz\n
$$
(CF_{3})_{2}S(O)F_{2} + R_{2}NH \rightarrow (CF_{3})_{2}S(O)(NR_{2})_{2}
$$
\n

\n\n I = (CH₃)₂N, (C₂H₅)₂N, III

\n\n NCH₂CH₂CH₂CH₂CH₂CH₂CH₂NCH₂CH₂NCH
\n IV\n V\n
$$
V
$$
\n

\n\n H = (CH₃)₂N, (C₂H₅)₂N, UH₂CH

$$
\mathbf{H} \qquad \qquad \text{(C13)}_2^{14}, \text{(C215)}_2^{14},
$$

$$
\begin{array}{cc}\n\stackrel{\cdot}{\text{NCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2}, \stackrel{\cdot}{\text{CH}_2\text{CH}_2\text{NCH}_2\text{CH}_2\text{NCH}_3} \\
\stackrel{\cdot}{\text{IV}} \\
\end{array}
$$

Purification iscarriedout by trap-to-trapdistillation. Compounds II -IV are slightly volatile and are stopped in traps at -20 , -20 , and -60 °C, respectively, while V is nonvolatile and was extracted from the reaction mixture with carbon tetrachloride. In an attempt to obtain a stable cyclic heteroatom compound, we extended our study to a diamine, **N,N'-dimethylethylenediamine.** However, cyclization does not occur under any conditions tried.

Compound **VI** is a nonvolatile, stable yellow liquid whose acyclic structure is confirmed by elemental analysis and spectral data. Steric hindrance by the methyl group may prohibit cyclization in this case. In contrast to this secondary diamine, as will be seen below, primary diols behave quite differently.

A few sulfoximides have been prepared from the reaction of **I** with CH_3NH_2 or from $(CF_3)_2S(O)=NM$ (M = H, Ag) with compounds that have electropositive centers. In addition, we have also demonstrated that compounds such as $(CF_3)_2$ - $(CF_3O)_2S(O)$ with primary amines²⁵ and $(R_f)_2S=NR$ with m-chloroperbenzoic acid26 are routes to sulfoximides. The extension of the reaction of **I** with more highly substituted primary

amines allows preparation of mono and bis(sulfoximides), e.g.,

\n
$$
I + H_2NR \rightarrow (CF_3)_2S(O) = NR
$$
\n
$$
R = CH_2CF_3, C(CH_3)_3, CH_2CH_2OH
$$
\n
$$
VII
$$
\n
$$
VIII
$$
\n
$$
IX
$$

In general, the products are formed in rather small yield and when purified via trap-to-trap are retained in the trap at **-78** *OC.*

When the reaction stoichiometry used is two parts **of** I to one

part of a diamine, bis(sulfoximides) are obtained.
\n
$$
I + H_2N(CH_2)_nNH_2 \rightarrow (CF_3)_2S(O) = N(CH_2)_nN = S(O)(CF_3)_2
$$

$$
n=2\;(\mathbf{X}),\,3\;(\mathbf{XI})
$$

All of the sulfoximides are stable, colorless liquids which may be stored at 25 °C in Pyrex glass indefinitely.

⁽²⁵⁾ Kitazume, T.; **Shreeve, J. M.** *Inorg. Chem.* **1978,** *17,* **2173. (26) Morse, S. D.; Shreeve, J. M.** *Inorg. Chem.* **1977,** *16,* **33.**

Table I. Reactions of Nucleophiles with Fluorinated S(V1) Compounds

Reactions of $(CF_3)_2S(O)F_2$		3207 Inorganic Chemistry, Vol. 32, No. 15, 1993		
	Table I. Reactions of Nucleophiles with Fluorinated S(VI) Compounds			
	products from nucleophiles			
reactants	$HNCH2CH2CH2CH2CH2CH2$	CF ₃ CH ₂ OH	R_3S iCN	R_2 NSi R_3
$(CF_3)_2S(O)F_2$		$(CF_3)_2SO_2^a$	$(CF_3)_2SO_2$, $(CF_3)_2SO$, $(CF_3)_2S^a$	$(CF_3)_2S(O)(NR_2)_2^a$
	$(CF_3)_2S(O)NCH_2CH_2CH_2CH_2CH_2CH_2)_2^q$ substitution	substitution	reduction	substitution
CF ₃ SF ₄ Cl		$CF3S(OCH2CF3)2Clb$	$CF_3SF_2(CN)_2CF$	$CF3S(NR2)2Cld$
	$CF_3S(NCH_2CH_2CH_2CH_2CH_2CH_2)_{2}Cl^b$ reduction	reduction	substitution	reduction

^a This work. ^{*b*} Reference 28. ^c Kumar, R. C.; Shreeve, J. M. Z. Naturforsch. 1981, 36B, 1407. ^d Kitazume, T.; Shreeve, J. M. J. Am. Chem. Soc., **1977,** *99,* 3690.

It is particularly interesting to compare the reactions of I under identical conditions with $CH_3N(H)CH_2CH_2N(H)CH_3$ and with H2NCH2CH20H to form compounds **VI** and **M,** respectively, with that of I with ethylene glycol where cyclization occurs smoothly. ^I+ HOCHZCHPOH -

0 KF **XI1**

After extracting the residue with CC4 and evaporating the solvent to leave a colorless liquid (fp 17 ± 1 °C), compound **XII** is found in \sim 57% yield. With $H_2NCH_2CH_2OH$, reaction only occurs at the nitrogen-hydrogen bond. With CF₃CH₂OH (either in the presence of $(C_2H_5)_3N$ or as the lithium derivative), I reacts smoothly to form $(CF_3)_2SO_2$.²⁷ When SF₅Cl is reacted with $CF₃CH₂OH$, reduction with concomitant defluorination results to form $FS(OCH_2CF_3)_2Cl$ (XIII). This behavior is identical to that observed when CF_3SF_4Cl is reduced and defluorinated in reaction with $CF₃CH₂OH_.$ ²⁸

Various trimethylsilyl compounds have been used as nucleophilic reagents with compounds which contain sulfur-fluorine bonds. For example, in the reaction of I with $(CH_3)_3$ SiN $(CH_3)_2$, 11 is obtained at **25** "C in reasonable yield. However, when I is reacted with $(CH_3)_3SiCF_3$ and $(CH_3)_3SiCN$, only a variety of decomposition products are obtained, e.g., $(CF_3)_2SO_2$, $(CF_3)_2SO$, $(CF_3)_2S$, $(CH_3)_3SiF$, and other unidentified materials.

These results make it worthwhile to point out the very great variability in behavior of polyfluoro- or **poly(fluoroalky1)sulfur-** (VI) compounds toward common reagents, as given in Table I.

While it might be expected that there would be greater similarity between the reaction chemistry of CF_3SF_4Cl and SF_5Cl , with these limited data for $(CH_3)_3SIX$ (X = CN, NR₂), (CF₃)₂S(O)F₂ and $SF₅Cl$ undergo reduction when $X = CN$ and substitution when $X = NR_2$. With the same reagents and CF_3SF_4Cl , a reversal of the chemistry observed takes place; i.e., when $X = CN$ substitution occurs, and reduction occurs when $X = NR₂$.

Experimental Section

Materials. The starting materials, i.e., **2,2,2-trifluoroethylamine,** 2,2,2 trifluoroethanol, tert-butylamine, dimethylamine, diethylamine, N,N**dimethylethylenediamine,** N-methylpiperazine, ethylenediamine, piperazine, 1,3-diaminopropane, 2-aminoethanol, dimethyl(trimethylsilyl)amine, and sodium fluoride were purchased and used as rcceived. Bis(trifluoromethyl)sulfur oxydifluoride⁷ and SF₅Cl²⁹ were prepared *via* the literature methods.

General Procedures.. A Bruker NR2OO Fourier transform NMR spectrometer was used to obtain ¹⁹F and ¹H NMR spectra with CFCl₃ and $(CH₃)₄Si$ as external references, respectively, and CDCl₃ as solvent. By using a VG-7070 mass spectrometer, chemical and electron impact

(28) **Gupta, K.** D.; Shreeve, J. **M.** *J. Fluorine Chcm.* **1987, 31,** 453.

(29) Schack, C. J.; Wilson, R. D.; Warner, **M. J.** *Inorg. Synrh.* **1986,21,8.**

ionization mass spectra were recorded. Infrared spectra were obtained by using a Perkin-Elmer Model 1700 Fourier transform infrared spectrometer. Volatile compounds were manipulated in a standard Pyrex glass vacuum line equipped with Heise-Bourdon tube and Televac micron thermocouple gauges.

The preparation of **11-VI** is as follows: Sodium fluoride (12 mmol) and the dialkylamine *(5* mmol) are placed in a 500-mL flask equipped with a Teflon stopcock. The flask is cooled to -196 °C, evacuated, and **bis(trifluoromethy1)sulfoxy** difluoride *(5* mmol) is introduced. After 24 h were allowed for a gradual warm up from -78 to $+25$ °C, the contents of the flask are separated by trap-to-trap distillation or extracted as a pale yellow liquid from the nonvolatile residue with CC4, filtered, and the solvent evaporated.

II. $(CF_3)_2S(O)[N(CH_3)_2]_2$ (Stops in a Trap at -20 °C). Spectral data are as follows. Infrared (KBr, capillary film): 2938 8,2839 m, 1485 sh, 1474 sh, 1461 s, 1439 sh, 1387 m, 1327 s, 1281 s, 1227 s, 1170 s, 1142 **s,** 1060 w, 966 sh, 870 sh, 767 w, 755 w, 716 w, 686 sh, 613 sh, 594 w cm-l. NMR: 19F **6** -73.0 (m) ppm; IH **6** 2.98 (m) ppm. MS (CI) *[m/e* (species), intensity]: 205 ($M^+ - CF_3$), 1.2; 191 ($CF_3SON_2C_3H_9^+ + 1$), 100; 189 (CF₃SON₂C₃H₈⁺), 24.3; 162 (CF₃SONC₂H₆⁺ + 1), 5.1; 161 $(CF_3SONC_2H_6^+), 1.6; 137 (SON_2C_4H_{12}^+ + 1), 1.3; 135 (SON_2C_4H_{11}^+),$ 2.0; 123 (CFSONC₂H₆⁺), 19.2; 122 (SON₂C₃H₁₀⁺), 25.7; 121 $(SON₂C₃H₉⁺), 100; 117 (CF₃SO⁺), 1.6; 92 (SONC₂H₆⁺), 100; 76$ (N_2SO^+) , 7.0; 69 (CF₃⁺), 100. Anal. Calcd for C₆H₁₂F₆N₂OS: C, 26.27; H, 4.37. Found: C, 25.41; H, 4.65. ric Chemistry, Vol. 32, No. 15, 1993 3207

Cr. Chemistry, Vol. 32, No. 15, 1993 3207
 D_{2n} (CF₃)SO, (CF₃)S^o (CF₃)So(O)(NR₃₎²

RSiCN

RSICN

RSICN

RSICN

CCV₃CC^F

CCV₃CC^F

CCV₃CC^F

CCV₃CC^F

III. $(CF_3)_2S(0)(N(C_2H_5)_2)$ (Stops in a Trap at -20 °C). Spectral data areas follows. Infrared (KBr, capillary film): 2930 **s,** 2900 m, 1655 m, 1561 m, 1485 **s,** 1474 **s,** 1461 **s,** 1439 **s,** 1386 **s,** 1327 **s,** 1281 **s,** 1229 **s,1281s,1229s,1171s,1141s,1116s,1060m,955s,870sh,787m,** 755 m, 716 m, 686 **s,** 613 **s,** 594 m, 547 **s** cm-l. NMR I9F 6 -73.0 *(8)* ppm; IH **6** 2.72 **(q,** 2H, *J* = 2.74 Hz) CH2, 1.15 **(t,** 3H) CH3. MS (CI) *[m/e* (species), intensity]: 261 (M⁺ – CF₃), 1.3; 260 (M⁺ – CF₃H), 4.7;
246 (M⁺ – C₂F₃H₃+), 27.4; 203 [CF₃S(O)N₂(C₂H₅)₂+], 15.3; 189 $[CF₃S(O)N(C₂H₅)₂]$, 54.8; 119 $[S(O)NC₄H₉⁺]$, 45.2; 69 (CF₃⁺), 14.3. 26.27; H, 4.37. Found: C, 25.41; H, 4.65.

III. $(CF_3)S(O)(N(C_2H_5))_2$ (Stops in a Trap at -20 °C). S

data are as follows. Infraned (KBr, capillary film): 2930 s, 2900 n

m, 1561 m, 1485 s, 1474 s, 1461 s, 1439 s, 1386 s,

IV. $(CF_3)_2S(0)(NCH_2CH_2CH_2CH_2CH_2)$ (Stops in a Trap at -60 *"C).* Spectral data are as follows. Infrared (gas, KBr disks): 3035 m, 2990 m, 1481 m, 1376 **s,** 1283 m, 1253 **s,** 1210 m, 1151 **s,** 1112 **s,** 1029 w, 950 w, 91 1 w, 822 m, 721 **s,** 700 m, 629 **s,** 405 **s,** cm-l. NMR: 19F 6-76.1 **(s);** lH **6** 3.42 (4H) (CH2)2N, 1.32 (6H) (CH2)3. MS (CI) *[m/e* (species), intensity]: 353 (M⁺ - H), 0.4; 307 (M⁺ - C₂H₄F), 0.7; 267 $(M⁺ – CF₄ + 1), 1.1; 247 (M⁺ – C₅H₉F₂), 7.8; 216 (M⁺ – 2CF₃), 1.0;$ 203 ($M^+ - C_3F_6H$), 26.2; 201 ($M^+ - C_6H_{10}F_3N$), 1.8; 186 [(CF₃)₂SO⁺], 2.0; 185 (C₆H₁₀F₃NS⁺), 2.3.

V. $(CF_3)_2S(O)(CH_2CH_2NCH_2CH_2NCH_3)_2$ (Nonvolatile Liquid). Spectral data are as follows. Infrared (KBr, capillary film): 2924 m, 2846 **sh,** 2801 m, 1560 m, 1509 m, 1457 sh, 1391 **s,** 1373 m, 1322 sh, 1289s, **1002m,965m,945m,853~,780~,715~,590mcm-~.** NMR: 3H) CH₃. MS (CI) $[m/e$ (species), intensity]: 257 (C₈H₁₄F₃N₃OS⁺), $1.2; 217 \, (C_6H_{12}F_3N_2OS^+), 2.9; 147 \, (C_5H_{11}N_2OS^+), 32.5; 117 \, (CF_3SO^+),$ 1.9; 101 (CF₃S⁺), 11.6; 100 (C₅H₁₂N₂⁺), 100; 99 (C₅H₁₁N₂⁺), 100; 84 $(C_4H_8N_2^+), 4.3; 69 (CF_3^+), 21.4.$ Anal. Calcd for $C_{12}H_{22}F_6N_4OS$: C, 37.50; H, 5.73. Found: C, 36.17; H, 5.61. 19F 6 -74.7 **(s);** 'H **6** 2.75 **(t,** 4H) SNCH2, 2.29 (t, 4H) NCH2, 2.0 (9,

Spectral data are as follows. Infrared (KBr, capillary film): 2948 **s, 1474m,1459m,1387m,1322m,1227m,1181s,1160m,920m,860** w, 592 w cm-I. NMR: I9F 6 -73.66 (3F), -75.18 (3F) ppm; IH **6** 3.50 (2H) SNCH₂, 2.93 (3H) SNCH₃, 2.63 (2H) NCH₂, 2.48 (3H) CH2NCH3, 2.21 (1H) NH. MS (CI) *[m/e* (species), intensity]: 334 **VI.** $(CF_3)_2S(0)[N(CH_3)CH_2CH_2N(CH_3)H]_2$ (extracted with CCl_3F).

⁽²⁷⁾ **Kncrr,** G. D.; Oberhammer, H.; Shreeve, J. **M.** J. Mol. *Srruct.* **1982, 82,** 143.

(M+ - CH4), 2.8; 233 **[CF3SO(N(CH3)C2H4NHCH3)NCHst],** 26.4; 147 (CF₃SONCH₃⁺ + 1), 9.8; 117 (CF₃SO⁺), 6.2; 70 (N₂C₃H₆⁺), 31.3; 69 (CF₃⁺), 34.3. Anal. Calcd for C₁₀H₂₂F₆N₄OS: C, 33.33; H, 6.11; N, 15.55. Found: C, 33.3; H, 6.0; N, 16.2.

The general procedure for the preparation of bis(trifluoromethy1) sulfoximines VII, VIII, and IX was as follows: Sodium fluoride (12 mmol) was placed in a 500-mL Pyrex reactor fitted with a Teflon stopcock. The flask was evacuated, cooled to -196 °C, and 5 mmoleach of $(CF_3)_2S(O)F_2$ and 5 mmol primary amine **(2,2,2-trifluoroethylamine,** tert-butylamine, or 2-aminoethanol) were condensed in. The reaction mixture was allowed to warm from -78 to 25 °C over 24 h. Purfication via trap-to-trap distillation permitted isolation of $(CF_3)_2S(O)$ =NCH₂CF₃ (VII, 80%), (CF₃)₂S(O)=NC(CH₃)₃ **(VIII**, 75%), and (CF₃)₂S(O)=NCH₂CH₂OH **(IX, 60%)** in a trap at -78 °C.

VII. (CF₃)₂S(O)=NCH₂CF₃. Spectral data are as follows. Infrared (gas, KBr disks): 2955 m, 1402 **s,** 1305 m, 1277 **s,** 1250 **s,** 1197 sh, 1174 **sh,** 1127 **s,** 952 m, 914 m, 820 m, 755 w, 668 m, 619 sh, 584 m, 517 m, cm⁻¹. NMR: ¹⁹F δ -71.73 (q of t, 6F, J_{F-F} = 0.88 Hz, J_{H-F} = 0.76 Hz) CF₃S, - 73.88 (sept of t, 3F, J_{H-F} = 8.47 Hz) CF₃C; ¹H δ 3.89 (q of sept, 2H). MS (CI) *[m/e* (species), intensity]: 284 (M+ + l), 11.5; 264 (M+ $-F$), 35.3; 214 (M⁺ – CF₃), 34.5; 198 (CF₃SNCH₂CF₃⁺), 13.9; 195 (M⁺ $-CF_4$), 8.7; 146 (CF₃SONCH₂++1), 22.1; 128 (CF₃SNCH₂++1), 7.9; 117 (CF₃SO⁺), 17.8; 101 (CF₃S⁺), 3.3; 76 (OSNCH₂⁺), 24.1; 69 (CF₃⁺) 100. Anal. Calcd for C₄H₂F₉NOS: C, 16.96; H, 0.7; N, 4.94. Found: C, 16.06; H, 0.46; N, 5.88.

VIII. $(CF_3)_2S(O) = NC(CH_3)_3$. Spectral data are as follows. Infrared (gas, KBr disk): 2986 **sh,** 1402 **s,** 1374 sh, 1239 **s,** 1190 **s,** 11 38 **sh,** 11 11 sh, 950 w, 911 w, 822 w, 735 w, 689 w, 617 m, 588 m, 541 w, 515 m cm-1. NMR: 19F **6** -73.83 **(s)** CF3; IH 1.38 **(s)** CH3. MS (CI) [m/e (species), intensity]: 258 (M⁺ + 1), 1.8; 242 (M⁺ – CH₃), 86.3; 216 (M⁺ – H₁F₂), 1.6; 102 (M⁺ – C₂F₂H₅), 32.7; 188 (M⁺ – CF₃), 16.6; 173 $(CF_3SONC_3H_6^+), 15.1; 147 (CF_3SON), 11.1; 132 (CF_3SON^+ + 1), 1.1;$ 117 (CF₃SO⁺), 1.37; 116 (CF₃SN⁺ + 1), 6.6; 104 (SNC₄H₉⁺ + 1), 25.8; 101 (CF3S+), 1.0; 69 (CF3+), 29.9; 57 (C4H9+), 100.

IX. $(CF_3)_2S(0) = NCH_2CH_2OH$. Spectral data are as follows. Infrared (gas, KBr disk): 3660 w, 2982 w, 2964 w, 1480 w, 1392 w, 1352 **s,** 1316 w, 1243 **s,** 1192 **s,** 1136 **s,** 1073 m, 1050 m, 997 w, 874 w, 736 **s,** 623 w, 588 w, 517 w, 481 m cm-I. NMR: 19F -71.60 **s;** IH 4.33 (t, $[m/e$ (species), intensity]: 228 (M⁺ - OH), 26.1; 214 (M⁺ - CH₂OH), 2H, $J = 5.6$ Hz) CH₂N, 3.62 (t, 2H) CH₂O, 3.50 (s, 1H) OH. MS (CI) 44.4; 195 (M⁺ - F - CH₂OH), 7.8; 178 (M⁺ - CF₃OH), 62.3; 132 (CF₃SONH⁺), 11.5; 117 (CF₃SO⁺), 11.5; 101 (CF₃S⁺), 3.2; 90 $(SNC₂H₄O), 22.6; 76 (OSNCH₂⁺), 14.0; 69 (CF₃⁺), 100; 60 (SNCH₂⁺),$ 40.0. Anal. Calcd for C₄H₅F₆NO₂S: C, 19.59; H, 2.04; N, 5.72. Found: C, 18.95; H, 1.53; N, 5.45.

The general procedure for the preparation of $(CF_3)_2S(O) = N (CH_2)_nN= S(O)(CF_3)_2$ $[n = 2 (X), n = 3 (XI)]$ was to place NaF (12) mmol) into a Pyrex flask, to evacuate the flask, and to add $(CF_3)_2S(O)F_2$ (2.5 mmol) and 1,2-ethylenediamine or 1,3-propylenediamine (1 mmol) at -196 °C. After the mixture was allowed to warm from -78 to $+25$ OC over 24 h, the volatile products were separated by trap-to-trap distillation with **X** or **XI** stopping at -20 °C.

X. $(CF_3)_2S(0) = N(CH_2)_2N = S(0)(CF_3)_2$. Spectral data are as follows. Infrared (capillary film, KBr): 2965 m, 1636 w, 1559 w, 1541 w, 1471 w, 1361 **s,** 1337 **s,** 1303 **s,** 1225 **s,** 1184 **s,** 1127 **s,** 965 w, 859 w, 812 m, 746 m, 618 m, 584 m, cm-I. NMR: **19F 6** -71.86 **s,** CF3; 'H δ 3.53 s, CH₂. MS (CI) [m/e (species), intensity]: 429 (M⁺ + 1), 15.6;

290 (M⁺ - C₂F₆), 1.5; 228 [(CF₃)₂SONC₂H₄⁺], 42.5; 214 [(CF₃)₂-SONCH₂⁺], 100; 198 [(CF₃)₂SNCH₂⁺], 3.0; 145 (CF₃SONCH₂⁺), 6.0; 117 (CF₃SO⁺), 14.2; 101 (CF₃S⁺), 1.6; 76 (OSNCH₂⁺), 11.1; 69 (CF₃⁺), 100; 60 (SNCH₂⁺), 49.0. Anal. Calcd for $C_6H_4F_{12}N_2O_2S_2$: C, 16.82; H, 0.93; N, 6.54. Found: C, 16.57; H, 0.90; N, 6.55.

XI. $(CF_3)_2S(0) = N(CH_2)_3N = S(0)(CF_3)_2$. Spectral data are as follows. Infrared (capillary film, KBr): 2765 m, 1397 **s,** 1328 **s,** 1225 **s,** 1181 **s,** 1127s, 1104s,901 **m,86Om,812~,772m,736~,620~,586** m, 514 s cm⁻¹. NMR: ¹⁹F δ -71.72 s; ¹H δ 3.51 (t, 4H) NCH₂, 1.95 (p, 2H) CCHz. MS (CI) [m/e (species), intensity]: 443 **(M+** + l), 25.2; 373 (M^+ – CF₃), 20.1; 242 [(CF₃)₂SONC₃H₆⁺], 15.1; 214 $[(CF₃)₂SONCH₂⁺],$ 9.2; 172 (CF₃SONC₃H₅⁺⁾, 2.8; 145 (CF₃SONCH₂⁺), 3.4; 131 (CF₃SON⁺), 2.0; 101 (CF₃S⁺), 1.7; 69 (CF₃⁺), 100.

XII. Reaction of $(CF_3)_2S(O)F_2$ with HOCH₂CH₂OH to give **(CF3)\$(0)0CH&H20 (W).** To **a** 200-mLPyrex glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added predried KF (46 mmol) and $HOCH_2CH_2OH$ (6.1 mmol). The vessel was evacuated and $(CF_3)_2S(O)F_2$ (6.3 mmol) was added at -196 °C. After the reaction was warmed to 25 °C and allowed to stand for 20 h, the reaction products were extracted with CCL₄ $(4 \times 5 \text{ mL portions})$. The excess CC4 was removed under vacuum to leave a colorless liquid (yield \sim 57%). Spectral data are as follows. Infrared (KBr, capilary film): 2985 w, 2907 w, 1475 w, 1237 **s,** 1205 **sh,** 1156 **s,** 1100 m, br, 1052 m, 1010 **w,** 943 m, 905 w, 781 w, 761 w, 725 m, 690 m, 660 w, 604 m, 583 w, 558 w, 524 w, 486 w cm-1. NMR: I9F 6 -64.2 **(s);** lH 6 4.25 **(s).** MS (CI) $[m/e$ (species)]: 177 (M⁺ – CF₃); 133 (CF₃SO₂⁺); 117 (CF₃SO⁺); 98 (CF₃SO⁺); 69 (CF₃⁺); 44 (C₂H₄O⁺). Anal. Calcd for C₄H₄F₆O₃S: C, 19.52; H, 1.64. Found: C, 19.71; H, 1.73.

XIII. Reaction of SF₅Cl with CF₃CH₂OH to give FS(OCH₂CF₃)₂Cl. 2,2,2-Trifluoroethanol (4 mmol), SF₅Cl (2 mmol), (C₂H₅)₃N (4 mmol), and hexane (10 mL) were added to a 250-mL Pyrex glass reaction vessel at -196 °C. The reaction mixture was warmed slowly to 25 °C over 12 h. The mixture was fractionated through a series of traps at -10 , -60 and -78 °C. XIII was retained in the trap at -78 °C. Spectral data are as follows. Infrared (gas, KBr disks): 2970 **s,** 2960 **s,** 2930 **s,** 1454 **s,** 1280 s, 1170 s, 1150 s, 1100 m, 1075 m, 1025 m, 950 m, 680 s, 670 s, 625 m cm⁻¹. NMR: ¹⁹F δ -72.1 (t, J_{F-H} = 8.3 Hz); ¹H δ 3.80 (q). MS (CI) [m/e (species), intensity]: 249 (M+ - Cl), 32.5; 231 (M+ + 1 - ClF), **5.2;230(M+-ClF),6.8;229/227** (M+-3F),22.0/71.0;215 (M+ $-CF_3$), 15.0; 181 (M⁺ + 1 - CF₃Cl), 93.7; 179/177 (M⁺ - CF₅), 19.0/ 56.7; 163 (M⁺ – CF₄Cl + 2H), 100; 149 (M⁺ – C₂H₃F₃ClO), 90.0; 147 $(C_2H_2F_3O_2S^+)$, 78; 131 $(C_2H_2F_3SO^+)$, 41.9; 69 (CF_3^+) , 100.

Reaction of $(CF_3)_2S(0)F_2$ **with** $(CH_3)_3SiN(CH_3)_2$ **.** Into an evacuated 100-mL Pyrex flask at -196 °C were condensed $(CF_3)_2S(O)F_2(3 \text{ mmol})$ and (CH_3) ₃SiN(CH₃)₂ (6 mmol). The reaction mixture was allowed to warm from -78 to $+25$ °C over 12 h. Purification via trap-to-trap distillation gave rise to Π in 60% yield in a -20 °C trap.

Reaction of $(CF_3)_2S(O)F_2$ **with** $(CH_3)_3SICN$ **or** $(CH_3)_3SICF_3$ **.** With or without solvent (benzonitrile) or in the presence or absence of KF, only reduction and/or defluorination occurred to give $(CF_3)_2S$, $(CF_3)_2SO$, and $(CF_3)_2SO_2$ as well as other unidentified materials.

Acknowledgment. We are grateful to the National Science Foundation (Grant CHE-9003509) and the Air Force Office of Scientific Research (Grant 91-0189) for support of this research.